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It is shown that there exists an elementary vortex topological current in the modified
two-dimensional Gross–Pitaevskii theory. An explicit expression for the vortex velocity
field as a function of the order parameter is derived. The evolution of vortices is studied
from the topological properties of the order parameter field. It is found that vortices
generate or annihilate at the limit points and encounter, split, or merge at the bifurcation
points of the order parameter fieldψ .
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1. INTRODUCTION

The observation of Bose–Einstein condensation (BEC) in trapped alkali
vapors (Andersonet al., 1995; Bradleyet al., 1995; Daviset al., 1995) has in-
tensified theoretical investigation on various aspects of the condensate. And it
has been proven that the Gross–Pitaevskii (GP) mean-field theory (Dalfovoet al.,
1999; Gross, 1961; Pitaevskii, 1961) is an indispensable tool both in analyzing
and predicting the outcome of experiments.

Recently, there has been a great deal of interest in low-dimensional BEC.
Kolomeiskyet al. have shown that the physics of dilute Bose systems requires a
fundamental modification of the Gross–Pitaevskii theory in low dimensionsd ≤ 2
(Kolomeiskyet al., 2000). In particular, for the case of two dimensions (2D), the
equation of motion for order parameterψ is given by

i h
∂ψ

∂t
= δE[ψ ]

δψ∗
, (1)
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where

E[ψ ] = h2

2m

∫
d2r

[
|∇ψ |2+ 2m

h2 V(x)|ψ |2+ 4π2

| ln(|ψ |2a2)| |ψ |
4

]
(2)

is the modified energy functional of the system.V(x) is the external potential, a is
the scattering length.

In this work we will show that, in the system described by Eqs. (1) and
(2), there is an elementary vortex topological current constructed by the order
parameterψ . By means of theφ-mapping topological current theory, (Duanet al.
1998a,b; Duan and Meng, 1993; Yang, 1997) we obtain an explicit expression for
the velocity of the vortex when the Jacobian determinantD(φ/x) at the zero points
of the order parameter fieldψ is nonzero, i.e.,D(φ/x) 6= 0. When this condition
fails, i.e.,D(φ/x) = 0, we find that the branch processes of vortices happen at these
points. This means that the vortex system is unstable there. According to the values
of the vector Jacobian of the order parameter in (2+ 1)-dimensional space-time,
the branch points are classified into two types: limit points and bifurcation points.
Vortices are found generating or annihilating at the limit points and encountering,
splitting, or merging at the bifurcation points of the order parameter fieldψ .

This paper is organized as follows: In section 2, we construct a vortex topo-
logical current in the modified 2D GP theory and analyze its inner structure. In
section 3, we concentrate on the branch processes of vortices in the theory. We
present our concluding remarks in section 4.

2. VORTEX TOPOLOGICAL CURRENT IN THE MODIFIED
2D GROSS–PITAEVSKII THEORY

The order parameterψ in the modified 2D GP theory can be regarded as the
complex representation of a two-dimensional vector fieldEφ = (φ1, φ2) over the
base spaceR2⊗ R and

ψ = φ1+ iφ2. (3)

Let us define the unit vector fieldna as

na = φa

‖φ‖ , a = 1, 2, (4)

satisfying

nana = 1.

We can construct a vortex topological current of the order parameter (Duan and
Meng, 1993)

Jµ = h

m
εµνλεab∂νn

a∂λn
b, µ, ν, λ = 0, 1, 2, (5)
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and its time component is defined as the total density of the vortex charge:J0 = ρ.
Obviously, the current (5) is conserved,

∂µJµ = 0. (6)

Using (4) and

∂µna = ∂µφ
a

‖φ‖ + φ
a∂µ

(
1

‖φ‖
)

, (7)

Jµ changes into

Jµ = h

m
εµνλεab

∂

∂φc

∂

∂φa
(ln ‖φ‖)∂νφc∂λφ

b.

By defining vector Jacobians ofψ :

εabDµ

(
φ

x

)
= εµνλ ∂φ

a

∂xν
∂φb

∂xλ
, (8)

and making use of the Laplacian relation inφ space

∂

∂φa

∂

∂φa
(ln ‖φ‖) = 2πδ2(Eφ),

we do have theδ-function-like topological current

Jµ = h

m
δ2(Eφ)Dµ

(
φ

x

)
. (9)

It is obvious that the current (9) is nonzero only whenEφ = 0, i.e.

φa(x0, x1, x2) = 0, a = 1, 2. (10)

Suppose that there areN solutions of Eqs. (10), denoted byzl (l = 1, . . . , N).
According to the implicit function theorem, when the zero pointszl are regular
points ofEφx the Jacobian determinant must be nonzero:

D

(
φ

x

)
|zl = D0

(
φ

x

)
|zl 6= 0. (11)

The solutions of Eqs. (10) can be generally obtained:

x1 = z1
l (t), x2 = z2

l (t), x0 = t, (12)

which represent the world lines ofN vorticesEzl (l = 1, . . . , N). Using the implicit
function theorem, we can get the velocity of thel th vortex from Eqs. (10),

Evl = d Ezl

dt
=
[ ED(φ/x)

D(φ/x)

]
Ezl

, ED(φ/x) = [D1(φ/x), D2(φ/x)]. (13)
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According to theδ-function theory andφ-mapping theory, (Duanet al., 1998b)
one can prove that

δ2(Eφ) =
N∑

l=1

βl

|D (φx ) | Ezl

δ2(Er − Ezl (t)), (14)

whereβl is the Hopf index ofφ-mapping theory (Duanet al., 1998b). The mean-
ing of βl is that when the pointEr covers the neighborhood ofEzl once, the vector
field Eφ covers the corresponding regionβl times. Then the spatial and tempo-
ral components of the vortex three-currentJµ, J1,2, and J0, can be respectively
written as the form of the current and the density of the system ofN classical
point particles with topological chargeβlηl h/mmoving in the (2+ 1)-dimensional
space-time

Ej = h

m

N∑
l=1

βlηl Evl δ
2(Er − Ezl (t)), (15)

ρ = h

m
δ2(Eφ)D

(
φ

x

)
= h

m

N∑
l=1

βlηl δ
2(Er − Ezl (t)),

whereηl = sgn(D(φ/x)zl ) = ±1 is the Brouwer degree (Duanet al., 1998b). Vor-
tex corresponds toηl = +1, while antivortex corresponds toηl = −1. According
to Eq. (6), the topological charge of vortex is conserved:

∂ρ

∂t
+∇ · Ej = 0. (16)

The solutions (12) of Eqs. (10) are based on the condition that the Jacobian
determinantD0(φ/x) = D(φ/x) 6= 0. WhenD0(φ/x) = 0, i.e.,ηl is indefinite,
the above results (12) will change in some way. It is interesting to discuss what
will happen and what the correspondence in physics is when this condition fails.

3. BRANCH PROCESSES OF VORTICES IN THE MODIFIED
2D GROSS–PITAEVSKII THEORY

When the usual JacobianD0(φ/x) = 0 at some points, it is shown that there
exist several crucial cases of branch process of vortices at these points, which are
called branch points. There are two kinds of branch points, namely limit points and
bifurcation points. Each kind corresponds to different cases of branch processes.
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3.1. Generating and Annihilating of Vortices

First, we study the case that the zeroes of the order parameter fieldψ include
some limit points. The limit points are determined by Eqs. (10) and

D0

(
φ

x

)
|(t∗, Ezl ) = 0, D1

(
φ

x

)
|(t∗, Ezl ) 6= 0, (17)

or

D0

(
φ

x

)
|(t∗, Ezl ) = 0, D2

(
φ

x

)
|(t∗, Ezl ) 6= 0. (18)

For simplicity, we only consider the case (17) and denote one of the limit points as
(t∗, Ezl ). Taking account of (17) and using the implicit function theorem, we have
a unique solution of Eqs. (10) in the neighborhood of the point (t∗, Ezl )

t = t(x1), x2 = x2(x1) (19)

with t∗ = t(z1
l ). In this case, one can see that

dx1

dt
|(t∗, Ezl ) =

D1(φ/x)

D(φ/x)
|(t∗, Ezl ) = ∞, (20)

i.e.,

dt

dx1
|(t∗, Ezl ) = 0. (21)

The Taylor expansion oft = t(x1) at the limit points (t∗, Ezl ) is (Duanet al., 1998a)

t − t∗ = 1

2

d2t

(dx1)2
|(t∗, Ezl )

(
x1− z1

l

)2
, (22)

which is a parabola in thex1− t plane. From Eq. (22) we can obtain two solutions
x1

1(t) andx1
2(t), which give two branch solutions (world lines of vortices). If

d2t

(dx1)2
|(t∗, Ezl ) > 0,

we have the branch solutions fort > t ∗ [see Fig. 1(a)]; otherwise, we have the
branch solutions fort < t ∗ [see Fig. 1(b)]. These two cases are related to the orgin
and annihilation of a vortex–antivortex pair.

One of the results of Eq. (20), that the velocity of vortices is infinite when
they are annihilating, agrees with the fact obtained by Bray (1997), who has a
scaling argument associated with the point defects final annihilation which leads
to a large velocity tail. From Eq. (20), we also obtain a new result that the velocity
of vortices is infinite when they are generating, which is gained only from the
topology of the order parameter field.
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Fig. 1. Projecting the world lines of vortices onto
(x1 − t)-plane. (a) The branch solutions for Eq. (22)
whend2t/(dx1)2|(t∗ , Ezl ) > 0, i.e., a vortex–antivortex
pair generates at the limit point. (b) The branch solu-
tions for Eq. (22) whend2t/(dx1)2|(t∗, Ezl ) < 0, i.e., a
vortex–antivortex pair annihilates at the limit point.

Since the topological current is identically conserved, the topological charges
of these two generated or annihilated vortices must be opposite at the limit points,
i.e.,

β1η1+ β2η2 = 0. (23)

For a limit point it is required thatD1(φ/x)|(t∗, Ezl ) 6= 0. As to a bifurcation
point, it must satisfy a more complex condition (Kubicek and Marek, 1983). This
case will be discussed in the following section.
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3.2. Encountering, Splitting, and Merging of Vortices

Let us turn to the case in which the restrictions of Eqs. (10) are

Di

(
φ

x

)
|(t∗, Ezl ) = 0, i = 0, 1, 2. (24)

These three restrictive conditions will lead to an important fact that the functional
relationship betweent andx1 or x2 is not unique in the neighborhood of (t∗, Ezi ).
This fact is easily seen from

dx1

dt
= D1(φ/x)

D0(φ/x)
|(t∗, Ezl ),

dx2

dt
= D2(φ/x)

D0(φ/x)
|(t∗, Ezl ), (25)

which under (24) directly shows that the direction of the integral curve of (25) is
indefinite at (t∗, Ezl ). Therefore, the very point (t∗, Ezl ) is called a bifurcation point
of the order parameter. Assume that the bifurcation point (t∗, Ezl ) has been found
from Eqs. (10) and (24). We know that, at the bifurcation point (t∗, Ezl ), the rank of
the Jacobian matrix [∂φ/∂x] is 1. With the aim of finding the different directions
of all branch curves of Eqs. (10) at the bifurcation point, we suppose that

∂φ1

∂x2
|(t∗, Ezl ) 6= 0. (26)

According to theφ-mapping theory, the Taylor expansion of the solution of Eqs.
(10) in the neighborhood of the bifurcation point (t∗, Ezl ) can be expressed as (Duan
et al., 1998a)

A
(
x1− z1

l

)2+ 2B
(
x1− z1

l

)
(t − t∗)+ C(t − t∗)2 = 0, (27)

which leads to

A

(
dx1

dt

)2

+ 2B
dx1

dt
+ C = 0 (28)

and

C

(
dt

dx1

)2

+ 2B
dt

dx1
+ A = 0, (29)

whereA, B, andC are three constants. The solutions of Eq. (28) or Eq. (29) give
different directions of the branch curves (world lines of vortices) at the bifurcation
point. There are four possible cases, which will show the physical meanings of the
bifurcation points.

Case 1(A 6= 0). For1 = 4(B2− AC) > 0 from Eq. (28) we get two different
directions of the velocity field of vortices

dx1

dt
|1,2= −B±√B2− AC

A
, (30)
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Fig. 2. Two world lines of vortices intersect with dif-
ferent directions at the bifurcation point, i.e., two vor-
tices encounter at the bifurcation point.

which is shown in Fig. 2, where two world lines of two vortices intersect with
different directions at the bifurcation point. This shows that two vortices encounter
and then depart at the bifurcation point.

Case 2(A 6= 0). For1 = 4(B2 − AC) = 0 from Eq. (28) we obtain only one
direction of the velocity field of vortices

dx1

dt
|1,2= −B

A
, (31)

which include three important cases: (a) Two world lines tangentially contact, i.e.,
two vortices tangentially encounter at the bifurcation point [see Fig. 3(a)]; (b) Two
world lines merge into one world line, i.e., two vortices merge into one vortex at
the bifurcation point [see Fig. 3(b)]; and (c) One world line resolves into two world
lines, i.e., one vortex splits into two vortices at the bifurcation point [see Fig. 3(c)].

Case 3(A = 0, C 6= 0). For1 = 4(B2− AC) = 0 from Eq. (29) we have

dt

dx1
|1,2= −B±√B2− AC

C
= 0,−2B

C
. (32)

There are two important cases: (a) One world line resolves into three world lines,
i.e., one vortex splits into three vortices at the bifurcation point [see Fig. 4(a)]; and
(b) Three world lines merge into one world line, i.e., three vortices merge into one
vortex at the bifurcation point [see Fig. 4(b)].

Case 4(A = C = 0). Eq. (28) and Eq. (29) give respectively

dx1

dt
= 0,

dt

dx1
= 0. (33)
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Fig. 3. (a) Two world lines tangentially contact, i.e.,
two vortices tangentially encounter at the bifurcation
point. (b) Two world lines merge into one world line,
i.e., two vortices merge into one vortex at the bifurca-
tion point. (c) One world line resolves into two world
lines, i.e., one vortex splits into two vortices at the
bifurcation point.
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Fig. 4. Two important cases of Eq. (32). (a) One
world line resolves into three world lines, i.e., one
vortex splits into three vortices at the bifurcation
point. (b) Three world lines merge into one world
line, i.e., three vortices merge into one vortex at the
bifurcation point.

This case is obvious, [see Fig. 5] and is similar to Case 3.
The above solutions reveal the evolution of the vortices. Besides the encoun-

tering of the vortices, i.e., two vortices encounter and then depart at the bifurcation
point along different branch curves [see Fig. (2) and Fig. 3(a)], it also includes
splitting and merging of vortices. When a multicharged vortex moves through the
bifurcation point, it may split into several vortices along different branch curves
[see Fig. 3(c), Fig. 4(a), and Fig. 5(b)]. On the contrary, several vortices can merge
into one vortex at the bifurcation point [see Fig. 3(b) and Fig. 4(b)].

The indentical conversation of the topological charge shows the sum of the
topological charge of these final vortices must be equal to that of the original
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Fig. 5. Two world lines intersect normally at the bi-
furcation point. This case is similar to Fig. 4. (a)
Three vortices merge into one vortex at the bifur-
cation point. (b) One vortex splits into three vortices
at the bifurcation point.

vortices at the bifurcation point, i.e.,∑
i

βi ηi =
∑

f

β f η f . (34)

Furthermore, from the above studies, we see that the generation, annihilation, and
bifurcation of vortices are not gradually changed, but suddenly changed at the
critical points.

4. CONCLUSION

In this work we studied the inner topological structure of vortex system in
the modified two-dimensional Gross–Pitaevskii theory in detail. One shows that
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the vortices are generated fromφ = 0 naturally in the framework of our topolog-
ical current theory and the charge of vortex is characterized by Hopf index and
Brouwer degree. One also shows that the quantities such as density and velocity
of vortex expressed in terms of the order parameter can be rigorously determined
by theφ-mapping theory. Futhermore, we conclude that there exist crucial cases
of branch processes in the evolution of the vortices whenD(φ/x) = 0, i.e.,ηl is
indefinite. This means that the vortices generate or annihilate at the limit points
and encounter, split, or merge at the bifurcation points of the order parameter field,
which means that the vortex system is unstable at these branch points. It is shown
that the phenomenological analysis of the topology of the order parameter gives
a qualitative explanation of vortex state in the modified 2D GP theory, which is
a necessary preliminary to microscopic considerations (of how vortices generate,
annhilate, etc).

Here we must point out that there exist two restrictions of the evolution
of vortices. One restriction is the conservation of the topological charge of the
vortices during the branch process [see Eqs. (23) and (34)], the other restriction
is the number of different directions of the world lines of vortices is at most four
at a space-time point [see Eqs. (28) and (29)]. These two restrictions lead to some
interesting results of the evolution of vortices in the modified 2D GP theory. For
example, a multiply quantized vortex withβl > 3 can never directly break up into
unit vortices (βl = 1). It is interesting to find a branch point and the concrete
branch process in the neighborhood of it. We hope the results of this paper will
help those experts to build simulations of vortex dynamics in the modified 2D GP
theory.
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